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Knowledge of the disease-specific genetic mutations in 
malignant pleural mesothelioma (MPM) has the potential 
to lead to rational targeted therapies. Recent studies have 
reported previously unknown recurrent genetic alterations 
in the BAP1 and LATS2 genes. Additional work has 
increased our understanding of the mechanism by which 
inactivating mutations in NF2 cause tumorigenesis. This 
review will highlight these recent discoveries and their 
relevance to MPM therapeutics.

BAP1

BRCA-associated protein 1 (BAP1) is a 729 amino acid 
protein encoded by the BAP1 gene at chromosome 3p21. 
A recent integrated genomics analysis identified somatic 
mutations and genomic losses of BAP1 in approximately 
25% of MPM (1). Subsequent groups have identified 
germline mutations of BAP1 in families with a high 
incidence of MPM, uveal melanoma (UM), melanocytic 
tumors, cutaneous melanoma (CM), and other cancers (2,3). 
Somatic mutations of BAP1 occur in approximately 84% of 
metastasizing UM, 14% of clear cell renal cell carcinoma 
(RCC), and a small subset of lung and breast cancer (4-7). 

Functional studies of BAP1 have characterized the protein 
as a nuclear-localized deubiquitinase (DUB) and member 
of the ubiquitin carboxy-terminal hydrolase (UCH) family 
of DUBs. Mass spectrometry studies have identified host 
cell factor 1 (HCF1) and additional sex combs like protein 
1 (ASXL1) as the major BAP1 binding partners. Together 
with HCF1, BAP1 modulates the expression of genes whose 
promoter regions are bound by the transcription factors 

E2F and YY1, or other as yet undefined transcription 
factors. HCF1 recruits histone methyltransferases to confer 
activating histone marks on the chromatin at promoter 
regions, thereby increasing gene transcription (8-10). As a 
binding partner with ASXL1, BAP1 forms the Polycomb 
repressive deubiquitinase (PR-DUB) complex, which 
cleaves ubiquitin from histone H2A. Histone H2A 
monoubiquitinated at lysine 119 is a regulatory mark in 
the Polycomb protein complex-mediated system of gene 
regulation (11). Polycomb proteins guide differentiation 
during embryogenesis, and defects in various subunits of 
the Polycomb protein complex have been found in a variety 
of cancers (12). Knockdown of BAP1 using siRNA has been 
shown to alter the expression of E2F and YY1-regulated 
genes and Polycomb-associated genes (1,10). Other possible 
functions of BAP1 include a role in DNA damage repair, 
but this remains to be better defined (5). Although the 
BAP1 protein was originally discovered using a yeast two-
hybrid screen with the RING finger domain of BRCA1 as 
bait, the association between BAP1 and BRCA1 remains 
unclear.

Based on BAP1’s apparent role in histone ubiquitination 
and the known functional inter-relationships between 
different histone modifications, agents targeting another 
type of chromatin modification, histone acteylation, have 
been tested in UM and MPM cell lines. The histone 
deacetylase inhibitors Vorinostat (a.k.a. SAHA), trichostatin 
A, and valproic acid (VPA) all caused growth arrest in 
BAP1 wild type (WT) UM cell lines and reverted the gene 
expression profile to a well-characterized less aggressive 
state. BAP1 shRNA knockdown in UM cell lines increased 
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sensitivity to VPA and reduced cell proliferation, but similar 
work using SAHA in the MPM cell lines 211H, HMeso, and 
H2373 [all BAP1 wild-type] as well as H28 (BAP1 deficient) 
failed to show a simple relationship between BAP1 loss and 
increased sensitivity to histone deacetylase inhibitors (13). 
(R. McMillan, M. Ladanyi, unpublished data) Furthermore, 
the large Phase III VANTAGE trial of SAHA as a second-
line chemotherapy failed to show a survival benefit or 
clinically significant increase in progression free survival 
(PFS) (14). Interestingly, studies in RCC cell lines have 
shown increased sensitivity to a PARP inhibitor in cells 
when BAP1 levels were reduced by treatment with BAP1 
shRNA (5). 

The BAP1 mutation is a sensitive and specific marker 
for metastatic potential in UM and correlates with higher 
tumor grade in RCC (4,5). BAP1 loss has yet to be linked 
to a more aggressive phenotype in MPM, though it may be 
associated with higher rates of tobacco use (M. Zauderer, 
unpublished data). A recent study of patients with 
BAP1 germline mutations underscores the importance 
of dermatologic and ophthalmologic surveil lance 
examinations in these individuals for secondary prevention 
of CM and UM (15). 

NF2

Inactivating mutations in the neurofibromatosis 2 (NF2) 
gene have been reported in 35-40% of MPM. NF2 encodes 
an ERM (ezrin, radixin, and moesin) domain protein 
also known as Merlin, which acts as a tumor suppressor 
mediating contact inhibition of proliferation (16,17). NF2 
resides on chromosome 22q11, and was originally identified 
as the causative mutation of familial neurofibromatosis. 
Additional studies have identified NF2 mutations in sporadic 
schwannomas, ependymomas, meningiomas, MPM, and a 
smaller number of RCC and CM (18). 

ERM proteins link membrane proteins to the cortical actin 
cytoskeleton, and for this reason NF2 had been postulated to 
function primarily at the cell cortex, the cytoplasmic region on 
the inner face of the cell membrane (19). Functional studies 
have established that NF2 regulates Rac-PAK signaling, the 
EGFR-RAS-ERK pathway, the PI3K-Akt pathway, and FAK-
Src signaling (20,21). However, unlike other ERM proteins, 
NF2 lacks a canonical, carboxy-terminal actin-binding motif 
and the active form of NF2 localizes to the nucleus (22). 
NF2 is active in its “closed” conformation, which is formed 
by intramolecular bonding between its N-terminal FERM 
domain and its C-terminal tail, rather than in its “open” 

conformation like other ERM proteins. Phosphorylation of 
NF2 at S518 disrupts intramolecular binding, resulting in 
NF2 adopting an “open”, inactive conformation (17). 

A recent mass spectrometry study identified the E3 
ubiquitin ligase CRL4 as a major binding partner of WT 
NF2 but not mutated forms of NF2 found in cancer. 
WT NF2 binds to the DCAF1 subunit of CRL4 where 
it inhibits CRL4-mediated ubiquitination of histones and 
other target proteins. Without NF2 inhibition, CRL4 
activates a broad oncogenic program leading to cell 
hyperproliferation, though the substrates of CRL4 have yet 
to be fully identified (22). The common link between NF2, 
BAP1, and ubiquitination of histones presents an intriguing 
possibility of interaction between these two major MPM 
tumor suppressor genes. 

The additional discovery that NF2 loss leads to 
mTORC1 activation independent of the AKT pathway 
offers an avenue for targeted inhibition of this pathway (23). 
Preclinical studies using everolimus as well as a combination 
of kinase inhibitors and rapamycin show increased 
sensitivity in cell lines with NF2 loss compared to NF2 
wild-type (23,24). The Phase II Southwest Oncology Group 
(SWOG) study of everolimus as a single-agent, second-
line chemotherapy failed to meet its primary endpoint of 
4 month PFS, but the patients enrolled were unselected for 
NF2 loss (25). 

LATS2

A comparative genome hybridization study of MPM cell 
lines recently led to the discovery of recurrent mutations 
in the Large tumor suppressor 2 (LATS2) gene at 
chromosome 13q12. The incidence of LATS2 mutations in 
tumor samples was lower than that found in cell lines—7 
mutations in 20 cell lines versus 3 mutations in 25 tumor 
samples—though additional groups have reported LATS2 
mutations in MPM tumors (1,26). The LATS2 protein is a 
serine threonine kinase that phosphorylates Yes-associated 
protein (YAP) and is a member of the Hippo signaling 
pathway. The Hippo pathway controls organ-growth during 
embryogenesis, and alterations of the pathway have been 
implicated in tumorigenesis by impairing contact inhibition 
of cell growth. YAP is the main downstream mediator of the 
Hippo pathway, functioning as a transcription factor which 
is active and nuclear-localized in its dephosphorylated 
state. YAP overexpression in the nucleus has been noted 
previously in MPM as well as hepatocellular carcinoma, 
lung cancer, and colon cancer. Phosphorylation of YAP by 
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LATS2 inactivates the transcription factor and sequesters 
YAP in the cytoplasm (27,28). Interestingly, NF2 loss has 
also been associated with increased nuclear expression of 
YAP. Also, NF2 cDNA transfection in NF2-deficient MPM 
cell lines results in increased YAP phosphorylation (29). 
However the MPM cell line Y-Meso-14 harbors both NF2 
and LATS2 inactivating mutations, and transfection with 
plasmid encoding LATS2 but not NF2 is sufficient to restore 
YAP phosphorylation, suggesting NF2 acts upstream of 
LATS2 (26). 

Conclusions

Disease-specific mutations in cancer offer the potential 
for rational targeted therapeutics. Previous discoveries 
in MPM genetics such as the frequent homozygous 
deletion of P16/CDKN2A at 9p21 have been correlated 
with patient outcome (30). New findings such as BAP1 
germline mutations may identify groups at greater risk 
for MPM who might benefit from increased surveillance 
and early intervention. The identification of pathways 
altered in MPM such as the PI3K-AKT-mTORC1 and the 
Hippo pathway may lead to targeted therapies that could 
be more effective than current therapies. A Phase I trial 
of the PI3K-AKT-mTORC1 inhibitor GDC-0980 has 
shown activity in patients with MPM and may represent an 
example of this sort of therapy (31). Further advances in our 
understanding of the molecular biology of MPM are likely 
to emerge in the near future as more cases will be subjected 
to next-generation sequencing of whole exomes, whole 
transcriptomes, and whole genomes.
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