Minimally invasive versus open thymectomy: a systematic review of surgical techniques, patient demographics, and perioperative outcomes

Nicholas R. Hess^{1*}, Inderpal S. Sarkaria^{2*}, Arjun Pennathur², Ryan M. Levy², Neil A. Christie², James D. Luketich²

¹University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; ²Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

*These authors contributed equally to this work.

Correspondence to: Inderpal S. Sarkaria, MD, FACS. University of Pittsburgh Medical Center - Department of Cardiothoracic Surgery, UPMC Presbyterian-Shadyside 5200 Centre Avenue, Suite 715.27 Pittsburgh, PA 15232, USA. Email: sarkariais@upmc.edu.

Background: Thymectomy is the mainstay of treatment for thymoma and other anterior mediastinal tumors, and is often utilized in the management of patients with myasthenia gravis (MG). While traditionally approached through a median sternotomy, minimally invasive approaches to thymectomy have increasingly emerged. The present systematic review was conducted to compare perioperative and clinical outcomes following minimally invasive thymectomy (MIT) and open thymectomy (OT).

Methods: Articles were obtained through a PubMed literature search. Comparative studies reporting clinical outcomes following MIT and OT were eligible for inclusion. We selected studies with full text availability, written in the English language, published after 2005 and with at least 15 patients in each arm. A descriptive analysis was performed.

Results: Twenty studies were included, involving a total of 2,068 patients undergoing either MIT (n=838) or OT (n=1,230). Within individual studies, MIT and OT cohorts were well matched with regards to patient age and gender, but there was considerable variation across studies. Resected thymomas were consistently larger in OT groups, with mean diameter significantly larger in five studies (MIT, 29–52 mm; OT, 31–77 mm). MIT was consistently associated with a lower estimated blood loss (MIT, 20–200 mL; OT, 86–466 mL), chest tube duration (MIT, 1.3–4.1 days; OT, 2.4–5.3 days), and hospital length of stay (MIT, 1–10.6 days; OT, 4–14.6 days). There were no consistent differences in rates of perioperative complications, thymoma recurrence, MG complete stable remission, or 5-year survival.

Conclusions: In appropriately selected patients, MIT may reduce blood loss, chest tube duration, and hospital length of stay, with comparable clinical outcomes compared to OT via median sternotomy.

Keywords: Thymectomy; transsternal; minimally invasive; outcomes

Submitted Oct 20, 2015. Accepted for publication Nov 25, 2015. doi: 10.3978/j.issn.2225-319X.2016.01.01 View this article at: http://dx.doi.org/10.3978/j.issn.2225-319X.2016.01.01

Introduction

Thymectomy is most commonly indicated and performed for myasthenia gravis (MG), thymoma, and other anterior mediastinal tumors (1-6). While median sternotomy has long been the accepted standard approach, minimally invasive methods have emerged over recent decades including transcervical, video-assisted thoracoscopic (VATS), and robotic video-assisted thoracoscopic (R-VATS) approaches (7-11). While maintaining safety and surgical veracity remain the first priority, in appropriately selected patients, minimally invasive approaches aim to lower postoperative morbidity and improve post-operative quality

of life. However, there remains debate regarding the indications, selection, and outcomes of patients undergoing these procedures versus open resections (12-31).

The purpose of this systematic review was to synthesize the current literature comparing minimally invasive thymectomy (MIT) versus open thymectomy (OT) approaches. We sought to identify patient demographics and surgical strategies employed, and describe key perioperative and long-term outcomes associated with each approach.

Methods

Literature search strategy

An electronic search of the PubMed database (http://www. ncbi.nlm.nih.gov/pubmed) was conducted from June 2015 to August 2015, employing English language and fulltext availability restrictions. The following search terms were employed: "thymectomy AND (robot OR robotic)" OR "thymectomy AND thoracoscopic". Results for these searches were then combined and duplicates were sequentially removed.

Eligibility criteria

Comparative studies reporting clinical outcomes of patients who underwent MIT and OT were eligible for inclusion. To be included, studies were required to have at least 15 patients in each surgical arm.

Data extraction and analysis

The listed authors extracted data for this review, and quality of evidence was assessed through examination of the design, analysis and sample size of each study. Relevant data from selected studies were tabulated, sorted by characteristics and outcomes of interest. We then performed a descriptive analysis by evaluating the overall trends in studies comparing MIT versus OT.

Results

Literature search

Literature search of the PubMed database using the proposed filters produced a total of 177 articles suitable for screening. Articles were subsequently evaluated for relevancy to this review topic, with 53 meeting eligibility

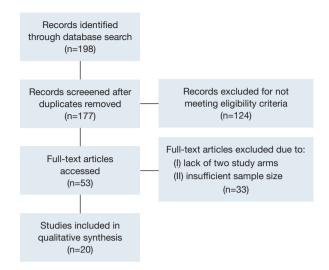


Figure 1 Flow diagram of literature search and study selection.

criteria. Of these 53 articles, 20 were found to include a comparison of MIT and OT, and have at least 15 subjects in each surgical arm. These 20 studies were included in this review (*Figure 1*).

Patient demographics

A total of 2,068 patients were reported in the identified studies, including 838 (40.5%) who underwent MIT and 1,230 (59.5%) who underwent OT procedures. Overall, surgical cohorts within individual studies were well matched, with only one study identifying a statistically younger median age in the MIT group versus the OT group (46 *vs.* 52 years; P=0.02) (20). There was considerable variation of age and gender across studies. Patient age ranged from a mean 20.5 to a median of 64 years in the MIT groups, and a mean of 25.5 to a mean of 65.4 years in the OT groups. Gender distribution ranged from 18% to 64% male in MIT groups, and 29% to 61% male in OT groups (*Table 1*).

The most common indications for thymectomy in the included studies were thymoma [1,046, (51%)] and/or MG [1,132, (55%)]. Overall, 469 (56%) of MIT patients and 577 (47%) of OT patients had thymoma. Similarly, 430 (51%) of MIT and 702 (57%) of OT patients had MG. Patients with thymoma were selected by either clinical or pathological Masaoka staging, and in one instance, World Health Organization (WHO) pathological staging (19). Patients with MG were selected by either thymoma status or Osserman classification. Two studies included all

Table 1 St	udy chara	Table 1 Study characteristics and demographic info	nic information									
Ct. dioc	100/	Ctudy contration	Minimally invacivo anaroch [07]	Case number n	Mean age,	Male dender [%]		Presence of MG_n [%]	Presence of	n [%]	Mean	Mean thymoma diameter mm
oudes				MIT OT	- i - i	MIT	i -	To	MIT	DT	MIT	OT
Mineo	2015	nonthymomatous MG	VATS: right, 15 [32] or left, 32 [68]	47 194	37 –	34	- 47 [100]	0] 194 [100]	0 [0]	[0] 0	I	I
Gu	2015	c-Masaoka stage I, II thymoma	VATS : right or left	49 44	51.3 50.9	57 5	52 4 [8]	5 [11]	49 [100]	44 [100]	43*	54*
Chen	2014	nonthymomatous MG	VATS : right, 54 [100]	54 73	20.5 25.5	60 5	52 54 [100]	0] 73 [100]	[0] O	0 [0]	I	I
Ye	2014	p-Masaoka stage I,II thymoma	VATS: right, 90 [72] or left 35 [28]	125 137	51.9 50.0	52 5	54 0 [0]	[0] 0	125 [100]	137 [100]	32	34
Ye	2014	p-Masaoka stage I, II thymoma	R-VATS: right, 15 [65] or left, 8 [35]	23 51	52.5 50.1	52 6	61 0 [0]	0] 0	23 [100]	51 [100]	30	33
Seong	2014	anterior mediastinal mass	R-VATS- right, left or bilateral	34 34	53.7 52.4	44 5	52 2 [6]	1 [3]	11 [32]	13 [38]	29	31
Manoly	2014	p-Masaoka stage I, II, III thymoma	VATS: right or left	17 22	63.1 65.4	35 5	59 8 [47]	4 [18]	17 [100]	22 [100]	1	I.
Liu	2014	p-Masaoka stage I, II thymoma	VATS: right, left, or bilateral	76 44	50.5 51.8	46 4	41 35 [46]] 14 [32]	76 [100]	44 [100]	46*	61 *
Kimura	2013	c-Masaoka stage I, II thymoma	VATS: side not indicated	45 29	55 57	42 3	34 14 [31]] 9 [31]	45 [100]	29 [100]	48*	65#
Не	2013	MG + p-Masaoka stage I, II thymoma	VATS: right, 15 [100]	15 18	54.2 48.6	47 6	61 15 [100]	0] 18 [100]	15 [100]	18 [100]	I	I
Weksler	2012	all thymectomy procedures	R-VATS: right, 13 [87] or left, 2 [13]	15 35	56.8 50.7	47 5	51 5 [33]	6 [17]	10 [67]	14 [40]	45	44
Jurado	2012	all thymectomy procedures	R-VATS, 2 [3] or VATS, 75 [97]: right, 2 [3] or bilateral 75 [97]	77 186	46*# 52*#	31 3	37 43 [56]	i] 96 [52]	10 [13]	62 [33]	45*	65*
Chung	2012	thymoma (excluding WHO B3 and C subtypes)	VATS: right, 16 [64] or left, 9 [36]	25 45	45.8 51.7	52 4	47 0 [0]	[0] 0	25 [100]	45 [100]	52*	77#
Pennathur	2011	c-Masaoka stage I, II thymoma	VATS: right, left, or bilateral	18 22	64* 64*	56 4	41 7 [39]	4 [18]	18 [100]	22 [100]	36*#	61*#
Lee	2011	MG	VATS: bilateral, 55 [100]	55 59	35.6 37.4	18 2	29 55 [100]	0] 59 [100]	11 [20] [#]	25 [42] [#]	Т	I
Huang	2011	MG	VATS – right, 33 [100]	33 66	36.5 37.3	27	30 33 [100]	0] 66 [100]	2 [6]	6 [9]	I	I
Odaka	2010	p-Masaoka stage I, II thymoma	VATS: right, 16 [73] or left, 6 [27]	22 18	51.9 51.1	64 3	39 0 [0]	[0] 0	22 [100]	18 [100]	44	50
Lin	2010	nonthymomatous MG	VATS: right, 38 [100]	38 22	33.1 30.4	26 3	32 38 [100]	0] 22 [100]	0 [0]	0 [0]	I	I
Meyer	2009	MG	VATS: right, 48 [100]	48 47	39.8 34.4	48 3	33 48 [100]	0] 47 [100]	4 [8]	6 [13]	I	I
Bachmann	2008	MG (Osserman 2-4)	VATS: side not specified	22 84	Combined: 38.2*	27	33 22 [100]	0] 84 [100]	6 [27]	21 [25]	I.	I
*, denote (mysethenis	data pre	*, denote data presented as a median value; *, musethenia creatic VATS video-assisted thoraco	lue; [#] , values were reported as statistically significant with P<0.05. MIT, minimally invasive thymectomy; OT, open thymectomy; MG, one states and the second states are also been associated thereas are a states are also been as a states are a	tistically s	ignificant with	P<0.05.	MIT, minimé	ully invasive thy	ymectomy;	OT, open tl	hymect	omy; MG, Ma stage
IIIyasınem	a gravis,	VAID, VIUEO-ASSISTEU LI	myasmenia gravis, VAIS, video-assisted moracoscopy; H-VAIS, robotic video-assisted moracoscopy; p-iviasaoka, pamologic video-assisted moracoska stage; C-masaoka, clinical masaoka stage;	naisisse-c	Inoracoscopy	p-iviasau	Ka, pairioiol	IC IVIASAUKA SU	age, c-iviasi	aoka, cilfilua	al iviasa	oka siage.

thymectomy procedures for any indication (20,21). Seong *et al.* included thymectomy performed for all anterior mediastinal masses (*Table 1*).

Operative technique

MIT was most commonly performed via VATS [764, (91%)] or R-VATS [74, (9%)]. Across the included studies, MIT was conducted through a right-sided [355, (62%)], bilateral [130, (23%)], or left-sided [92, (16%)] approach. OT was universally performed via median sternotomy with or without an accompanying cervical incision.

Thymoma size and staging

Of studies reporting histological Masaoka staging, 216 (62%) of thymomas resected by MIT were stage I, while 124 (36%) and 6 (2%) were stages II and III respectively. Likewise, 239 (58%) of thymomas resected by OT were stage I, and 156 (38%) and 20 (5%) were stages II and III respectively (data not shown). One study reported a significant difference in clinical tumor staging; 91% were stage I in the MIT group and 59% were stage I in the OT group (P=0.0025) (23). Thirteen studies did not show significant difference in thymoma staging (15-22,25,26,28-30). Thymomas resected by OT were consistently larger, with significantly greater tumor diameter reported in five studies (18,19,23,25,30). Reported thymoma diameter ranged from 29 to 52 mm in MIT groups and 31 to 77 mm in OT groups (*Table 1*).

Perioperative and post-operative outcomes

There was no consistent trend in operative times among studies (*Table 2*). Three studies reported statistically shorter operative times in the MIT groups (28-30), while another three-demonstrated statistically shorter times in the OT groups (16,22,31). Estimated blood loss in the MIT groups ranged from a median of 20 mL to a median of 200 mL. OT blood loss ranged from a mean of 86 mL to a mean of 466 mL. Twelve of 14 studies reported significantly less blood loss during MIT versus OT (15-17,20-24,28-31).

There was no significant difference in resection margins between MIT and OT. Reported rates of R0 resection of thymoma ranged from 59.1% to 100% during MIT versus 52.9% to 100% during OT. Chung *et al.* reported a higher incidence of local thymoma invasion in their OT arm [4 (8.9%) *vs.* 0 (0%); P=0.044]. Four studies provided rates of en bloc resection of adjacent structures necessary to complete the operation (20,26,27,30). Manoly *et al.* reported phrenic nerve resection in two (11.8%) of MIT patients in order to obtain complete thymoma resection (0% in OT). Diaphragmatic plication was not performed in either case. Other structures included lung parenchyma removed via wedge resection (MIT, 2–6%; OT, 2–10%), pericardium (MIT, 2–9%; OT, 3–10%), and innominate vein (MIT, 0%; OT, 1–4%). Some structures were resected en bloc and in combination with others. No studies reported a significant difference in rates of additional resection (*Table 2*). It was not possible to determine from these studies the rates of R0 resection following en bloc additional resections.

There were 23 reported open conversions to either sternotomy or thoracotomy in this series. Rates of conversion ranged from 0% to 11.8% (*Table 2*). Eight were performed for bleeding, three for pleural adhesions, and four for invasion of vascular structures and/or phrenic nerve. Other reasons included local tumor invasion of pericardium, lack of experience with MIT, or no indication was provided.

Mean chest tube drainage time ranged from 1.3 to 4.1 days in the MIT groups and 2.4 to 5.3 days in the OT groups. Seven studies reported significantly shorter drainage times following MIT (15,17,19,25,27-29). MIT patients also experienced shorter stays in the intensive care unit (ICU), with three studies reporting significance. Lastly, the MIT groups experienced a significantly shorter hospital length of stay (LOS) in 16 studies (12-15,17-21,25-31). Hospital LOS ranged from 1 to 10.6 days following MIT, and 4 to 14.6 days following OT (*Table 3*).

There was no consistent trend in postoperative morbidity. Complication rates ranged from 0% to 22.7% following MIT and 0% to 57% for OT, with one study reporting significantly fewer complications following MIT (6.7% vs. 57.1%; P=0.001) (21). There were a total of 46 postoperative complications reported for MIT and 118 for OT. The most commonly reported complications for MIT were respiratory infection/pneumonia (10), atelectasis (4), pleural effusion (3), atrial fibrillation (2), brachial plexus injury (2), and pneumothorax (2). There was one reported iatrogenic phrenic nerve injury, one transient phrenic nerve palsy, and one study reporting a single "phrenic nerve lesion" (12). The most common complications following OT were respiratory infection/pneumonia (26), atrial fibrillation (16), pleural effusion (12), and wound infection (5). One study reported six "phrenic nerve

Mem operating Mem blood Forefaction Lung resertion, hold Mem operating Mem operatin Mem operating Mem oper	Table 2 Study characteristics and intraoperative outcomes	ly character	istics and	intraopera	tive outco	omes											
Budy Year Ime (mi) Iose (mi) Iose (m) Io			Mean o	operating	Mean b		R0 resec	tion	Lung res	ection,	Pericard	lial	Phrenic	nerve	Innomina	ate vein	Open conversion,
Mine Or Min Min <th< td=""><td>Study</td><td>Year</td><td>time (n</td><td>(uir</td><td>loss (m</td><td>L)</td><td>rate (%)</td><td></td><td>l%] u</td><td></td><td>resectio</td><td>n, n [%]</td><td>resection</td><td>ղ, n [%]</td><td>resection</td><td>յ, n [%]</td><td>n [%]</td></th<>	Study	Year	time (n	(uir	loss (m	L)	rate (%)		l%] u		resectio	n, n [%]	resection	ղ, n [%]	resection	յ, n [%]	n [%]
Mine 2015 150° <th< th=""><th></th><th></th><th>MIT</th><th>OT</th><th>MIT</th><th>ОТ</th><th>MIT</th><th>ОТ</th><th>MIT</th><th>OT</th><th>MIT</th><th>OT</th><th>MIT</th><th>OT</th><th>MIT</th><th>OT</th><th>MIT</th></th<>			MIT	OT	MIT	ОТ	MIT	ОТ	MIT	OT	MIT	OT	MIT	OT	MIT	OT	MIT
Gu 2015 66 ⁴ 88 ⁴ 12 ⁴ 10	Mineo	2015	150#	138#	180*	240*	I	I	I	I	I	I	I	I	I	I	4 [8.5]
Cherio 2014 10 12 35° 86° 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Gu	2015	65#	*88	126#	177#	100	100	1 [2]			2 [4]	0 [0]	1 [2]	0 [0]	2 [4]	3 [6.1]
(b) (1) (1) (2) <td>Chen</td> <td>2014</td> <td>119</td> <td>112</td> <td>35#</td> <td>86*</td> <td>I</td> <td>Ι</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>Ι</td>	Chen	2014	119	112	35#	86*	I	Ι	I	I	I	I	I	I	I	I	Ι
(6) (6) (7) (6) (7) (6) (7) (6) (7) <td>Ye</td> <td>2014</td> <td>170*#</td> <td>210*#</td> <td>200*#</td> <td>450*#</td> <td>I</td> <td>4 [3.2]</td>	Ye	2014	170*#	210*#	200*#	450*#	I	I	I	I	I	I	I	I	I	I	4 [3.2]
Soong 214 157 138 - 2 [1 Minute 2012 101 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Ye	2014	97#	215#	61#	466*	100	100									0 [0]
Manoly 2014 175 152 - 52.9 59.1 - - 2 [11.3] - 2 [11.3] Liu 2014 142 150 165 160 100	Seong	2014	157	139	I	I	I	I	2 [6]		2 [6]	1 [3]	I	I	I	I	1 [2.9]
Liu 2014 142 142 150 105 160 100 100 100 100 1 1 1 1 1 1 1 1 1 1	Manoly	2014	177	152	I	I	52.9	59.1	I	I	I	I	2 [11.8]	[0] 0	I	I	2 [11.8]
Kimura2013197167105'202'105'202'105'202'105'202'105'202'105'202'105'201'105'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'100'201'201'100'201'2	Liu	2014	142	150	105	160	100	100	I	I	I	I	I	I	I	I	1 [1.3]
He 2013 202* 142* 99* 225* - - - - 0 0 Werkler 2012 130 - 42* 151* 100 100 1 - - 0 0 - - - 0 0 - - - 0 0 - - 0 0 0 0 100* 100* 100* 100 100 100 100 100 101 101 101 0 101	Kimura	2013	197	167	105#	262*	I	Ι	I	I	Ι	I	I	I	I	I	Ι
Weekser 2012 130 - 42 ⁺ 151 ⁺ 100 ⁺ 100 ⁺ 100 ⁻ 100 ⁺ <	He	2013	202#	142*	#66	225#	I	I	I	I	I	I	I	I	I	I	0 [0]
Jurado 2012 167* 144* 20" 100" 91.9 3 [4] 18 [10] 7 [9] 18 [10] 5 7 0 0 2 11 6 [7.8] Chung 2012 117 131 - - - - - - 2 2 2 3 - - - 0 0 2 - 2 2 3 - - - 0 0 - 2 3 - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 - 2 2 3 - 2 2 3 - 2 2 3 - 2 3 - 2 3 - 2 3 3 - 2 3 3 - 2 3 3	Weksler	2012	130	I	42*	151*	100	100	I	I	I	I	I	I	I	T	I
Chung 2012 117 131 2 2 2 2 3 Pennathur 2011 - - 94.4 100 - - - - - 2 2 2 2 3 Pennathur 2011 112 131 34" 124" 98.2 96.6 - - - - - - - 2 0 0 Huang 2011 102 104 101" 207" 1 101" 2 - - - - 0 </td <td>Jurado</td> <td>2012</td> <td>167*</td> <td>144*</td> <td>20*#</td> <td>100*#</td> <td>100</td> <td>91.9</td> <td>3 [4]</td> <td>18 [10]</td> <td>7 [9]</td> <td>18 [10]</td> <td>I</td> <td>I</td> <td>0 [0]</td> <td>2 [1]</td> <td>6 [7.8]</td>	Jurado	2012	167*	144*	20*#	100*#	100	91.9	3 [4]	18 [10]	7 [9]	18 [10]	I	I	0 [0]	2 [1]	6 [7.8]
Pennathur 2011 - - 94.4 100 - 0	Chung	2012	117	131	I	I	I	I	I	I	I	I	I	I	I	I	2 [8.0]
Lee 2011 112 131 34* 124* 98.2 96.6 - - - - - 0 0 Huang 2011 207* 173* 89* 227* - - - - - - - 0 0 Odaka 2010 194 181 101* 208* 100 100 - - - - - - 0 0 0 Odaka 2010 169 177 126 187 - - - - - - 0 0 0 Meyer 2009 128 119 - - - - - - - 0	Pennathur	2011	I	I	I	ļ	94.4	100	I	I	I	I	I	I	I	I	I
Huang 2011 207* 173* 89* 227* - - - - - - 0 0 Odaka 2010 194 181 101* 208* 100 100 - - - - - 0 0 Lin 2010 169 177 126 187 - - - - - 0 0 0 Meyer 2009 128 119 - - - - - - - 0 </td <td>Lee</td> <td>2011</td> <td>112</td> <td>131</td> <td>34#</td> <td>124#</td> <td>98.2</td> <td>96.6</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>0 [0]</td>	Lee	2011	112	131	34#	124#	98.2	96.6	I	I	I	I	I	I	I	I	0 [0]
Odaka 2010 194 181 101* 208* 100 100 - - - - - - 0 0 Lin 2010 169 177 126 187 - - - - - - 0 0 Meyer 2009 128 119 - - - - - - 0 0 0 Meyer 2009 128 119 - - - - - - 0	Huang	2011	207#	173*	89#	227#	I	I	I	I	I	I	I	I	I	I	0 [0]
Lin 2010 169 177 126 187 - - - - - 0 0 Meyer 2009 128 119 - - - - - 0 0 0 Bachmann 2008 - - - - - - 0 0 0 *, denote data presented as a median value; *, values were reported as statistically significant with P<0.05. MIT, minimally invasive thymectomy; OT, open thymectomy.	Odaka	2010	194	181	101	208*	100	100	I	I	I	I	I	I	I	I	0 [0]
Meyer 2009 128 119 - - - - 0 0] Bachmann 2008 - - - - - - 0 - 0 *, denote data presented as a median value: #, values were reported as statistically significant with P<0.05. MIT, minimally invasive thymectomy; OT, open thymectomy.	Lin	2010	169	177	126	187	I	I	I	I	I	I	I	I	I	I	0 [0]
Bachmann 2008	Meyer	2009	128	119	I	I	I	I	I	I	I	I	I	I	I	I	0 [0]
*, denote data presented as a median value; #, values were reported as statistically significant with P<0.05. MIT, minimally invasive thymectomy; OT, open thymectomy.	Bachmann	2008	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
	*, denote da	ta presente	ed as a m	nedian valu	e; [#] , valu	es were re	ported as	statistical	y significa	nt with P<(0.05. MIT,	minimally	invasive th	iymectomy;	OT, open	thymector	ny.

Annals of cardiothoracic surgery, Vol 5, No 1 January 2016

Table 3 Perioperative and long-term outcomes	rioperativ	re and lo	ing-term	outcom	es																
Study	Year	Mean ple drainage (days)	Mean pleural drainage (days)	Mean ICU LOS (days	Mean ICU LOS (days)	Mean hospital LOS (days)	ospital ys)	Morbidity (%)	ity (%)	Transfu	Transfusion (%)	30-day mortality (%)	ty (%)	5-year overall survival (%)	all	Thymoma recurrence (%)		MG complete stable remission (%)		Mean follow-up time (years)	time
		MIT	ОТ	MIT	OT	MIT	ОT	MIT	ОТ	MIT	ОТ	MIT	OT	MIT	OT	MIT	OT M	MIT OT		MIT OT	F
Mineo	2015	I	I	I	I	3.8#	4.5*	2.1	2.5	I	I						- 40	0 45	Q	12.4 _	
Gu	2015	2.5	2.7	0.8#	2.2	5.7*	8.4*	I	I	0	0	I			-	0	і 0	I		Combined: 2.25*	d: 2.25*
Chen	2014	2.6	2.4	1.4	1.6	7.8	6.9	3.7	6.8	I	I			·	·		- 20	20.4 27	27.4	I I	
Ye	2014	**C	5*#	I	I	8*#	10*#	4.8	3.6	2.4	1.5	1			-	0.8	0.7 –	I		3.4* 3.5*	Q*
Ye	2014	1.3#	4.8*	Т	Т	3.7#	11.6#	4.3	3.9	0	0	1		·	1	0	- 0	I		1.4 1.5	Q
Seong	2014	1.5#	3.1*	I	I	2.7#	5.5#	0	14.7	I	I	1	I		-	0	- 0	I		1.1 1.9	0
Manoly	2014	I	I	1:1	2.0	4.4*	6.4*	17.6	45.5	0	18.2	0	0	83.3	93.8	5.9	9.1 –	I		2.5 2.9	0
Liu	2014	4.1*	5.2#	1.7	2.1	7.1#	9.1	0	0	I	I	1		100	96.8	2.6	2.3 –	I		3.7* 4.1*	*
Kimura	2013	I	I	I	I	11*	15*	I	I	I	I	1			-	6.7 (і 0	I		1	
He	2013	3.5	3.6	1.2	0.8	10.6	12.2	26.7	33.3	13.3	27.8	0	- 0		-	0	0 26	26.7 -		1	
Weksler	2012	I	I	Т	Т	1 *#	4*#	6.7#	57.1*	0	0	0	2.9 -	·	·		1	I		1	
Jurado	2012	I	I	°*#	۱ *#	3*# 3	2*#	9.1	13.4	I	I	0	0.5 -		-	0	۱ ∞	I		2.4* 6.7*	*2
Chung	2012	1.8*	3.6#	I	I	3.4*	6.4*	0	6.7	I	I	0	0	100#	87#	, 0	4.4 –	I		6.5 5.8	œ
Pennathur	2011	I	I	I	I	3*# 3	2*#	I	I	I	I	·	-	100	88	0	4.5 –	I		2.3* 4.8*	*00
Lee	2011	2.4*	5.3#	0.3#	3.1*	6.8*	14.6#	2	5	0	ი	0	- 0			, T	1	I		1	
Huang	2011	I	I	I	I	I	I	24.2	15.1	I	I	·	I	·	I		- 42	42.4 6(60.6	6.4 [#] 9.8 [#]	*0
Odaka	2010	2.0#	4.1#	I	I	4.6*	11.2*	0	22.2	0	5.6	· ·	I	·	-	0	і 0	I		1.8 4.9	0
Lin	2010	I	I	2.1	2.0	5.6*	8.1*	5	5	8	0	0	۱ 0				- 32	2 36		3.2 7.2	N
Meyer	2009	I	I	I	I	1.9#	4.6#	I	I	I	I	i.	1	·			37	34.9 19	15.8	6.1*# 4.2	4.2*#
Bachmann	1 2008	I	I	I	I	10.5*#	19*#	22.7	19.0	I	I	·	1				- 47	47.6 3!	35.1	Combined: 8*	d: 8*
*, denote data presented as a median value; [#] , values were reported as statistically significant with P<0.05. MIT, minimally invasive thymectomy; OT, open thymectomy; LOS, length of stay; ICU, intensive care unit; MG, myasthenia gravis.	data prese intensive	ented a: care un	s a media iit; MG, m	an valu iyasthe	e; [#] , val inia gra	ues were vis.	reported	as stati	stically siç	gnificant	with P<0.(05. MIT,	minimally	y invasi	ve thyme	actomy;	; OT, op	en thym	ectomy;	LOS, len	igth of

6

lesions" following OT (12).

Thirty-day mortality did not differ between groups. Chung et al. published a significantly higher 5-year survival rate in the MIT versus OT group (100% vs. 87%; P=0.033). Three other studies reported no difference in 5-year survival (18,25,26). Additionally, no significant differences in thymoma recurrence were reported between MIT and OT. Pleural recurrence/dissemination was more commonly reported than local recurrence for both MIT and OT. There were six cases of pleural recurrence/dissemination and one case of local recurrence following MIT. Similarly, there were four cases of pleural recurrence/dissemination and one case of local recurrence following OT. Lastly, none of the included studies reported a significant difference in MG complete stable remission (CSR) rate between MIT and OT groups. CSR rates ranged from 20.4% to 47.6% for MIT and 15.8% to 60.6% for OT (Table 3).

Cost analysis

Ye and colleagues reported mean hospitalization costs of 53,886 versus 43,798 Chinese Yuan for R-VATS and transsternal thymectomy, respectively. These findings were not found to be statistically significant (P=0.174) (data not shown).

Discussion

Thymectomy is an important component in the treatment of early stage thymoma and anterior mediastinal tumors, as well as MG. Selection of surgical technique has been a long debated topic since its initial development. The current debate is focused on the determination of which surgical approach minimizes perioperative morbidity, while also offering acceptable long-term outcomes associated with a complete resection. The aim of this study was to investigate and summarize the current literature comparing minimally invasive and open approaches for thymectomy. We were particularly interested in perioperative and longterm outcomes, as well as any key differences in patient demographics between the surgical groups.

Surgical cohorts within each study were well matched with regards to age and gender, with one exception (20). However, we found considerable variation across studies, which can likely be attributed to differences in patient selection. This variation was likely due to differences between the two most common indications for thymectomy: (I) MG, which classically affects younger populations; and (II) thymoma, which presents at later ages. In studies investigating nonthymomatous MG, mean age ranged from 20.5 to 33.1 years in MIT groups and 25.5 to 30.4 in OT arms. In comparison, studies listing thymoma as an inclusion criterion had a mean age ranging from 45.8 to 64.0 years for MIT and 50.0 to 65.4 years for OT arms. This heterogeneity in populations may have contributed to the variation in reported outcomes across studies.

OT was consistently utilized for larger thymomas, while MIT was implemented for smaller tumors. Several studies reported a thymoma diameter cutoff for MIT at 5 cm (19,23,25,28,29), 6 cm (23) or 8 cm (20), which in turn selected for smaller tumors to be resected by MIT. It is difficult to determine the effect that this uneven matching may have had on perioperative and long-term outcomes. It is likely that larger tumors are associated with higher rates of additional en bloc resection of adjacent structures, and carry a different prognosis than smaller tumors. However, due to the paucity of available data, the present systematic review was not able to adequately investigate these differences.

MIT was associated with decreased blood loss, shorter chest tube duration, and shorter hospital LOS (12-31). The incidence of post-operative complications and longterm outcomes were comparable between the two surgical groups. Moreover, there were no reported significant differences in phrenic nerve injury. In patients with resectable disease, MIT may be a superior option for minimization of bleeding and hospitalization time, while offering long-term disease control comparable to OT. However, there is evidence to suggest a role for OT when MIT cannot be safely completed (19,20,26,27,29-31). Such instances include resection of large invasive tumors, dense adhesive disease, and high risk of significant bleeding unable to be controlled by MIT.

Robotic-assisted thymectomy

This review included three studies that used robotic-assisted platforms as their sole method of minimally invasive thymic resection (21,27,28). These articles reported significantly lower blood loss (range, 42–61 mL), chest intubation times (range, 1.3–1.5 days), and hospital LOS (range, 1.0–3.7 days) when compared to OT. These authors suggest that robotic assisted approaches may achieve outcomes comparable to conventional video-assisted techniques. Ruckert *et al.* reported similar rates of postoperative

complication between R-VATS and VATS thymectomy, and a higher rate of MG CSR in patients undergoing R-VATS (CSR, 39.3% *vs.* 20.3%; P=0.01) (32).

In our own experience of 17 patients undergoing R-VATS thymectomy, we have seen acceptable perioperative and short-term outcomes. Mean estimated blood loss in our cohort was 39 mL, and median chest tube and hospital LOS were 1 and 2 days, respectively. Robotic assisted MIT may show promise in development of safe and effective strategies for obtaining complete thymic resections, and potentially offer advantages of better visualization and instrument control over non-robotic MIT approaches.

Study limitations

The present study had several limitations. As with any systematic review, the process of literature search is prone to publication bias and the non-differential selection of studies with positive findings. To date, there have been no randomized trials comparing MIT and OT. As a result, this review was composed of non-randomized observational reports with significant and inherent selection bias. Another limitation was the degree of variability across studies with regards to study design, patient selection criteria, clinical versus pathologic staging, follow-up time, and presentation of findings. Additional limitations include effects of surgeon experience and learning curves associated with the various procedures, which were largely unreported or difficult to quantify in the included studies.

In appropriately selected patients with MG, or with moderate to small sized thymoma, therapeutic outcomes of MIT are comparable to OT, and may result in shorter hospital length of stay, decreased blood loss, and potentially fewer post-operative complications. Right or left VATS approaches appear to be comparable in outcome and a matter of surgeon preference. While robotic assisted approaches may afford the surgeon improved control and visualization during the conduct of operation, clinical outcomes appear to be similar to VATS. Cost analyses remain indeterminate, with MIT likely incurring higher operational costs than OT, but with potentially overall lower cost due to decreased length of hospital stay. The impact of robotic assisted approaches on cost remain a significant unknown, with "common" wisdom suggesting higher costs due to the high capital costs of these platforms, but with few formal analyses investigating this assumption. Prospective, randomized, controlled trials will likely be necessary to better delineate the differential outcomes and costs between open and minimally invasive approaches in these patients.

Acknowledgements

We would like to thank Kathy Lovas for her assistance with editorial support.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- 1. Davenport E, Malthaner RA. The role of surgery in the management of thymoma: a systematic review. Ann Thorac Surg 2008;86:673-84.
- 2. Falkson CB, Bezjak A, Darling G, et al. The management of thymoma: a systematic review and practice guideline. J Thorac Oncol 2009;4:911-9.
- 3. Ströbel P, Bauer A, Puppe B, et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis. J Clin Oncol 2004;22:1501-9.
- Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2000;55:7-15.
- Jaretzki A, Steinglass KM, Sonett JR. Thymectomy in the management of myasthenia gravis. Semin Neurol 2004;24:49-62.
- Masaoka A. Extended trans-sternal thymectomy for myasthenia gravis. Chest Surg Clin N Am 2001;11:369-87.
- Jaretzki A 3rd. Thymectomy for myasthenia gravis: analysis of controversies--patient management. Neurologist 2003;9:77-92.
- Cooper JD, Al-Jilaihawa AN, Pearson FG, et al. An improved technique to facilitate transcervical thymectomy for myasthenia gravis. Ann Thorac Surg 1988;45:242-7.
- Keating CP, Kong YX, Tay V, et al. VATS thymectomy for nonthymomatous myasthenia gravis: standardized outcome assessment using the myasthenia gravis foundation of America clinical classification. Innovations (Phila) 2011;6:104-9.
- 10. Rea F, Marulli G, Bortolotti L, et al. Experience with the "da Vinci" robotic system for thymectomy in patients with

Annals of cardiothoracic surgery, Vol 5, No 1 January 2016

myasthenia gravis: report of 33 cases. Ann Thorac Surg 2006;81:455-9.

- Keijzers M, de Baets M, Hochstenbag M, et al. Robotic thymectomy in patients with myasthenia gravis: neurological and surgical outcomes. Eur J Cardiothorac Surg 2015;48:40-5.
- Bachmann K, Burkhardt D, Schreiter I, et al. Long-term outcome and quality of life after open and thoracoscopic thymectomy for myasthenia gravis: analysis of 131 patients. Surg Endosc 2008;22:2470-7.
- Meyer DM, Herbert MA, Sobhani NC, et al. Comparative clinical outcomes of thymectomy for myasthenia gravis performed by extended transsternal and minimally invasive approaches. Ann Thorac Surg 2009;87:385-90; discussion 390-1.
- Lin MW, Chang YL, Huang PM, et al. Thymectomy for non-thymomatous myasthenia gravis: a comparison of surgical methods and analysis of prognostic factors. Eur J Cardiothorac Surg 2010;37:7-12.
- Odaka M, Akiba T, Yabe M, et al. Unilateral thoracoscopic subtotal thymectomy for the treatment of stage I and II thymoma. Eur J Cardiothorac Surg 2010;37:824-6.
- Huang CS, Cheng CY, Hsu HS, et al. Video-assisted thoracoscopic surgery versus sternotomy in treating myasthenia gravis: comparison by a case-matched study. Surg Today 2011;41:338-45.
- 17. Lee CY, Kim DJ, Lee JG, et al. Bilateral video-assisted thoracoscopic thymectomy has a surgical extent similar to that of transsternal extended thymectomy with more favorable early surgical outcomes for myasthenia gravis patients. Surg Endosc 2011;25:849-54.
- Pennathur A, Qureshi I, Schuchert MJ, et al. Comparison of surgical techniques for early-stage thymoma: feasibility of minimally invasive thymectomy and comparison with open resection. J Thorac Cardiovasc Surg 2011;141:694-701.
- Chung JW, Kim HR, Kim DK, et al. Long-term results of thoracoscopic thymectomy for thymoma without myasthenia gravis. J Int Med Res 2012;40:1973-81.
- 20. Jurado J, Javidfar J, Newmark A, et al. Minimally invasive thymectomy and open thymectomy: outcome analysis of 263 patients. Ann Thorac Surg 2012;94:974-81; discussion 981-2.
- 21. Weksler B, Tavares J, Newhook TE, et al. Robot-assisted thymectomy is superior to transsternal thymectomy. Surg Endosc 2012;26:261-6.
- 22. He Z, Zhu Q, Wen W, et al. Surgical approaches for stage I and II thymoma-associated myasthenia gravis: feasibility of complete video-assisted thoracoscopic surgery (VATS)

thymectomy in comparison with trans-sternal resection. J Biomed Res 2013;27:62-70.

- 23. Kimura T, Inoue M, Kadota Y, et al. The oncological feasibility and limitations of video-assisted thoracoscopic thymectomy for early-stage thymomas. Eur J Cardiothorac Surg 2013;44:e214-8.
- 24. Chen Z, Zuo J, Zou J, et al. Cellular immunity following video-assisted thoracoscopic and open resection for non-thymomatous myasthenia gravis. Eur J Cardiothorac Surg 2014;45:646-51.
- 25. Liu TJ, Lin MW, Hsieh MS, et al. Video-assisted thoracoscopic surgical thymectomy to treat early thymoma: a comparison with the conventional transsternal approach. Ann Surg Oncol 2014;21:322-8.
- Manoly I, Whistance RN, Sreekumar R, et al. Early and mid-term outcomes of trans-sternal and video-assisted thoracoscopic surgery for thymoma. Eur J Cardiothorac Surg 2014;45:e187-93.
- 27. Seong YW, Kang CH, Choi JW, et al. Early clinical outcomes of robot-assisted surgery for anterior mediastinal mass: its superiority over a conventional sternotomy approach evaluated by propensity score matching. Eur J Cardiothorac Surg 2014;45:e68-73; discussion e73.
- 28. Ye B, Li W, Ge XX, et al. Surgical treatment of early-stage thymomas: robot-assisted thoracoscopic surgery versus transsternal thymectomy. Surg Endosc 2014;28:122-6.
- 29. Ye B, Tantai JC, Ge XX, et al. Surgical techniques for early-stage thymoma: video-assisted thoracoscopic thymectomy versus transsternal thymectomy. J Thorac Cardiovasc Surg 2014;147:1599-603.
- Gu ZT, Mao T, Chen WH, et al. Comparison of videoassisted thoracoscopic surgery and median sternotomy approaches for thymic tumor resections at a single institution. Surg Laparosc Endosc Percutan Tech 2015;25:47-51.
- Mineo TC, Ambrogi V. Video-assisted thoracoscopic thymectomy surgery: Tor Vergata experience. Thorac Cardiovasc Surg 2015;63:187-93.
- Rückert JC, Swierzy M, Ismail M. Comparison of robotic and nonrobotic thoracoscopic thymectomy: a cohort study. J Thorac Cardiovasc Surg 2011;141:673-7.

Cite this article as: Hess NR, Sarkaria IS, Pennathur A, Levy RM, Christie NA, Luketich JD. Minimally invasive versus open thymectomy: a systematic review of surgical techniques, patient demographics, and perioperative outcomes. Ann Cardiothorac Surg 2016;5(1):1-9. doi: 10.3978/j.issn.2225-319X.2016.01.01