
© Annals of Cardiothoracic Surgery. All rights reserved. Ann Cardiothorac Surg 2019;8(4):492-493 | http://dx.doi.org/10.21037/acs.2019.06.08

Usefulness of computational fluid dynamics in penetrating aortic 
ulcer

Ferdinando Auricchio1, Michele Conti1, Rodrigo M. Romarowski2

1Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy; 23D and Computer Simulation Laboratory, IRCCS-Policlinico 

San Donato, San Donato Milanese, Italy

Correspondence to: Ferdinando Auricchio. Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy. Email: auricchio@unipv.it.

Submitted Mar 16, 2019. Accepted for publication Jun 11, 2019.

doi: 10.21037/acs.2019.06.08

View this article at: http://dx.doi.org/10.21037/acs.2019.06.08

Editorial

Computational fluid dynamics (CFD) is a numerical 
technique aimed at solving a system of partial differential 
equations describing fluid motion in a complex 3D 
arbitrary domain (1). Ever since the first CFD models 
were developed, there has been immense interest not only 
in industrial applications but also in the simulation of 
blood flow.

Early hemodynamic simulations were run in idealized 
geometries resembling human vasculature and boundary 
conditions were mostly reproduced from physiology 
books. Two main contributions helped to leap forward and 
arrive where we are today: the improvement in imaging 
methods, which gave researchers the opportunity to create 
patient-specific models, including geometry and flow 
measurements, and the continuous increase in computer 
memory and processing power (2). With these two obstacles 
becoming increasingly more manageable, it is now possible 
to run a simplified simulation of blood flow on any personal 
computer if the timeframe for results is not critical. Authors 
focused their CFD efforts first in healthy aortas and then 
moved to diseases, such as aneurysms (3), dissections 
and penetrating aortic ulcers (PAU), trying to find the 
hemodynamic pathways that may predict the evolution of 
the patient by further stratifying risk in comparison with 
“classical” clinical indicators (i.e., aortic diameter) (4).

As an example, PAU is a disease characterized by two 
biomechanical components that closely interact: the fluid 
dynamics of blood, and the mechanical response of the 
damaged elastic lamina and the hematoma in the media 
layer. Such features make the mechanism of rupture 
different from a thoracic aortic aneurysm, where the aorta 
is dilated and sometimes intraluminal thrombus is present 

from a dissection (where a parallel cavity for blood is 
created in the media) (5).

It is now clear that the question we would like to answer 
with computational simulations is: which patient with 
a PAU is more likely to develop further damage to the 
different layers of the aortic wall, leading to growth of the 
hematoma or even rupture? To do so, CFD falls short in 
describing the blood-tissue interaction since simulations 
are typically done within a rigid wall (6). A more complete 
computational model is possible using fluid-structure 
interaction (FSI) as well as detailed modelling of the 
behaviour of the tissues that constitute each layer of the 
aortic wall (7). However, even if all these requisites were 
met, there would still be inter-individual variability in tissue 
characteristics that are impossible to acquire by means of 
non-invasive techniques in each diseased patient.

Even if this hypothetical blood-tissue interaction model 
did not include much uncertainty, there would still be 
a crucial step needed for taking simulations to clinical 
practice: validation against clinical outcomes. Fortunately, 
the incidence of PAU is low (as compared to other vascular 
diseases) and current guidelines give clear indications on 
when surgery (either endovascular or open) is indicated. 
Since the risk of treatment clearly outweighs the life-
threatening risk of bleeding after rupture, nobody would 
agree to test the validity of computational simulations by a 
wait-and-watch strategy for patients with increasing PAU 
diameter.

Most hemodynamic indicators retrieved from CFD 
that are currently available in literature [ranging from 
Wall Shear Stress and Displacement Forces (8) to more 
complex indicators (9)] have not yet demonstrated any 
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utility in independently predicting the evolution of disease. 
Accordingly, there are still several challenging steps to 
execute reliable CFD models. First, creating a model 
able to predict the rupture behaviour of the combined 
aortic layers even without the effect of blood. Secondly, 
the computational model should include a FSI simulation 
framework, where the fluid can interact with the aortic wall 
in a realistic way. Finally (and importantly), the simulations 
should be “multiscale”, not only in space, but also in time: 
simulations should cover what happens in each heartbeat as 
well as the long-term impact of pathologic hemodynamics 
in the aortic tissue.

In conclusion, advances in CFD have made simulations 
of blood flow in diseased aortic reconstructions increasingly 
accurate. However, the complexity of including blood-
tissue interaction in a multiscale analysis limits the ability of 
researchers to predict the course of PAU.
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