
© Annals of Cardiothoracic Surgery. All rights reserved. Ann Cardiothorac Surg 2022;11(4):389-401 | https://dx.doi.org/10.21037/acs-2022-bav-20

Introduction

Bicuspid aortic valve (BAV) disease affects people worldwide 
as the most common congenital heart valve defect. Present 
in 2–4% of the population, BAV disease is associated with 
high rates and early onset of calcific aortic valve disease 
(CAVD), aortic insufficiency, and ascending aorta and/
or aortic root dilation compared to tricuspid aortic valve 
patients (1-4). Historically, valve replacement has been with 
surgical aortic valve replacement (SAVR) however, in the 
past decade transcatheter aortic valve replacement (TAVR) 
as emerged as a safe and minimally invasive alternative. 
Currently, there is much debate on whether we can safely 
transition to TAVR for BAV patients due to the much more 
complex anatomy compared with tricuspid AV morphology 

patients. This review aims to provide an overview of the 
management of calcific aortic stenosis (AS) associated with 
BAV. This will include the risks and benefits or SAVR and 
TAVR and introduce strategies for reducing complications 
by utilizing 3D printing and computer modeling techniques.

BAV anatomy and classification

Due to the nature of congenital defects, the BAV anatomy 
has many different types that differ in the way the cusps 
are fused. The most commonly used BAV classification 
method was made by Sievers et al. and considers the specific 
cusps that are fused and the number of fused raphe (5). 
Recently, Jilaihawi et al. created a classification method 
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more relevant to TAVR that considers the shape of the 
valve opening including tricommissural, bicommissural 
raphe, and bicommissural non-raphe types with coronary 
cusp fusion and mixed cusp fusion subtypes (6) (Figure 1). 
The length of fusion can also vary as the valve can have 
cusps that are partially fused. Common imaging modalities 
include high temporal resolution echocardiography, which 
can also provide hemodynamic information and high spatial 
resolution computed tomography (CT). Echocardiography 
alone has been shown to misdiagnose 88.5% of BAV 
patients as being tricuspid who were later diagnosed with 
BAV disease from cardiac CT (7). This stresses the need 
for routine high resolution CT imaging for planning valve 
replacements. However, even with CT imaging it can still 
be difficult to properly assess the fine structures of the 
anatomy due to the calcium blooming effect when a large 
amount of calcium is present.

BAV associated diseases and treatment

BAV disease is commonly associated with aortic valvular 

stenosis or insufficiency and aortic aneurysms. The 
following sections will outline these common diseases 
associated with BAV disease and the available treatment 
options.

Aortic stenosis

AS is mainly caused by CAVD, which is a degenerative 
disease involving the growth of calcific lesions within 
the soft tissue. CAVD is commonly associated with 
BAV disease—roughly 50% of the population of people 
effected by CAVD also have BAV disease (2). CAVD is also 
known to have an earlier onset in BAV patients compared 
to tricuspid patients—many of them are younger and 
have lower surgical risk (8). Often BAVs have elliptically 
shaped openings and heavily calcified raphes making the 
anatomy considerably more complicated compared to 
tricuspid patients. Treatment for CAVD is through full 
replacement of the valve and historically has been through 
SAVR consisting of surgical excision of the native tissue 
and implantation of a bioprosthetic or mechanical valve. 

Figure 1 BAV classification scheme factoring valve shape consisting of tricommissural, bicommissural raphe-type, and bicommissural non-
raphe-type groups with coronary cusp fusion and mixed cusp fusion subgroups (6). Reprinted by permission from Elsevier (6). BAV, bicuspid 
aortic valve.
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However, the field is continually transitioning to TAVR due 
to positive clinical comparisons to SAVR and fast patient 
recovery times. Recent clinical trials have shown similar 
outcomes between SAVR and TAVR after five years in 
tricuspid aortic valve patients leading to Food and Drug 
Administration (FDA) approval of TAVR for low surgical 
risk patients (9,10). Some clinical data exists showing similar 
outcomes between tricuspid and BAV patients which led to 
FDA removal of the cautionary label of TAVR use in BAV 
patients (11,12). However, these studies were not long term 
and tended to be very patient selective by not encompassing 
the complex anatomy BAV cases. As of 2020, ~9% of TAVR 
cases are for BAV patients (7). This number is expected to 
rise yet there has not been a comprehensive clinical trial 
comparing TAVR for tricuspid and TAVR for BAV low 
surgical risk patients. Yoon et al. showed that the presence of 
the calcified raphe and excess leaflet calcification increases 
the risk of aortic root rupture and paravalvular regurgitation 
(PVR) (13) (Figure 2). The difference in outcomes with 

respect to variance in BAV anatomy makes the TAVR for 
BAV patient selection process very important.

Aortic insufficiency and aortopathy

Aortic insufficiency is defined by improper closing of the 
aortic valve cusps causing regurgitation during diastole. 
Aortic insufficiency has been found to be present in 47% of 
BAV patients at the time of BAV diagnosis (3). Additionally, 
aortopathy is known to be present in roughly 50% of BAV 
patients (4). Vessel dilation is classified by the location of 
dilation; type 1 is dilation of the ascending aorta, type 2 is 
dilation of the aortic arch and type 3 is dilation of the aortic 
root (4). Aortic insufficiency in BAV patients can be caused 
by aortic dilation, cusp prolapse, or cusp restriction from 
the raphe (14). Treatment strategy depends on the cause of 
insufficiency—aortic dilation requires replacement of the 
ascending aorta and/or the aortic root and cusp prolapse/
restriction can commonly be repaired by resecting the  

Figure 2 Study performed by Yoon et al. comparing TAVR outcomes with leaflet calcification volume and distribution across BAV types with 
tricuspid control. Mild leaflet calcification on the top row and excess leaflet calcification on the bottom row with the tricuspid control, non-
raphe BAV, noncalcified raphe BAV, and calcified raphe BAV from left to right. Excess leaflet and raphe calcification BAV had highest rates 
of PVR and aortic root rupture following TAVR. Reprinted by permission from Elsevier (13). TAVR, transcatheter aortic valve replacement; 
BAV, bicuspid aortic valve; PVR, paravalvular regurgitation. 
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raphe (14). Additionally, when the cause of insufficiency is 
aortic root dilation it is not necessary to replace the valve 
as valve sparing root replacement has been shown to be 
safe and effective regardless of the severity (15). Although 
TAVR has been performed in some high- and extreme-risk 
patients with severe aortic insufficiency, the results have not 
been favorable and is not recommended. 

TAVR adverse outcomes: concern in complex 
BAV anatomies

TAVR was originally applied in patients with tricuspid 
aortic valve morphologies with commonly symmetric root 
anatomy and calcific burden. However, BAVs are commonly 
elliptical and their diameter is not always constant with 
respect to height (16). Additionally, the calcium distribution 
can be more complex with the presence of a calcified 
raphe. The following sections will outline the common 
complications following TAVR and their relevance to BAV 
patients including PVR, aortic root rupture, valve leaflet 
thrombosis, increased permanent pacemaker implantation 
(PPI), coronary access and durability.

PVR and aortic root rupture

PVR is one of the most common complications associated 
with TAVR and is defined as backwards blood flow from the 
aorta to the left ventricle during diastole due to improper 
device sealing and, when moderate to severe, has been 
associated with increased patient mortality (17). Stent 
undersizing, high calcium volume, stent eccentricity and 
unfavorable positioning are all causes of PVR (18-20). 
Specifically, this is one of the most common complications 
following TAVR in those with a bicuspid AV as the annulus 
in these patients is eccentric and can have high volumes of 
calcium. Proper CT analysis and oversizing of the TAVR 
prosthesis may mitigate PVR (21,22). The most dreaded 
complication remains an aortic root rupture following 
a balloon-expandable device or post-dilation in a self-
expandable device deployment and has an increased risk 
of occurring when high volumes of calcium are present. 
Aortic root rupture is a result of excess damage to the native 
tissue from calcium protrusion (23). BAV patients with high 
calcium volume and a calcified raphe have the highest risk of 
rupture (4.5%) as opposed to BAV patients with low calcium 
volume (0.9%) (13). A common preventative strategy is 
for the operator to reduce the balloon filling volume as to 
reduce the stress on the native tissue (23). However, this 

increases the risk of PVR. The decision between residual 
PVR or root rupture remains the most important and 
controversial aspect of TAVR in BAV patients. 

Currently, it is very difficult to determine the risk 
of aortic root rupture other than analyzing the calcium 
severity. This is due to high patient variability in calcium 
distribution where calcium can be present on the cusp 
free edges, at the aortic annulus and in the left ventricular 
outflow tract making it difficult to determine which calcific 
nodules may puncture the tissue. Additionally, the patient 
tissue compliance has a significant amount of variability, 
most closely associated with age, making it very difficult to 
know how much stress is needed to rupture the tissue (24). 
Balloon volume is mostly determined procedurally where 
the operator may stop increasing volume if they feel too 
much resistance from the native tissue which may leave the 
patient with PVR. These counteracting strategies make it 
difficult to avoid moderate to severe PVR and aortic root 
rupture in TAVR for complex BAV patients, and determine 
the risk of such complications prospectively due to the 
complex nature of the anatomy (Figure 3). Ultimately, BAV 
patients with high amounts of calcium should be strongly 
considered for SAVR if they are low surgical risk, and if 
TAVR is necessary, a degree of caution should be used.

Thrombosis and durability

Thrombosis and valve durability are very important in the 
low surgical risk population as they serve to benefit more 
from a longer valve lifespan as to avoid re-intervention. 
Leon et al. found higher thrombosis rates following TAVR 
(2.6%) compared to SAVR (0.7%) and similar valve 
deterioration after two years in low surgical risk tricuspid 
patients (25). Valve thrombosis normally forms in the neo-
sinus, which is the pocket located between the bioprosthetic 
cusp and the native cusp, and is likely caused by reduced 
blood flow in this region (26-29). Valve durability is thought 
to be related to the stress on the native leaflets which is 
dependent on the geometry of the deployed stent and the 
hemodynamics of the device (30-32). Due to the complex 
dynamic nature of the TAVR deployment it is common for 
the stent to be asymmetrical post procedure. This includes 
stent ellipticity, under expansion, and tilt with respect to 
the native sinus (29,33,34). Each of these asymmetrical 
deployment types have been associated with adverse 
hemodynamic environments demonstrated in three separate 
studies (Figure 4) (35-37). Stent eccentricity was found 
to create localized regions of high Reynolds shear stress 



Annals of Cardiothoracic Surgery, Vol 11, No 4 July 2022  393

© Annals of Cardiothoracic Surgery. All rights reserved. Ann Cardiothorac Surg 2022;11(4):389-401 | https://dx.doi.org/10.21037/acs-2022-bav-20

and increased turbulence intensity (35). Under-expanded 
deployments were found to increase bioprosthetic leaflet 
folding and increase neo-sinus blood residence time (36).  
Tilted stent deployment with respect to the native sinus 
was found to increase the fluid residence in the sinus 
that the stent was angled away from (37). Each of these 
hemodynamic environments could increase thrombosis risk 
and lower device durability.

Asymmetric deployment is caused by reduced balloon 
volume, native valve elliptical opening and increased calcium 
volume which is of particular concern for anatomically 
complex BAV patients who have elliptical openings, high 
calcium volumes, and often have reduced balloon volume 
deployments. Overall, BAV patients are more predisposed 
to asymmetrical deployments and adverse hemodynamic 
environments with use of TAVR. This indicates thrombosis 
and valve deterioration will likely be a concern long-term. 
However, because long-term data on TAVR for BAV is 
very limited it is not certain thrombosis and durability will 
be a concern and requires additional long-term follow-up 
clinical studies.

Pacemaker implantation

PPI is one of the most common complications following 
TAVR. PPI is caused by interaction between the stent 
frame and/or the catheter with the conduction system 

located below the membranous septum which is located 
between the right and non-coronary sinuses (38,39). It is 
associated with device type, deployment depth, oversizing/
overexpansion, membranous septum length, preexisting 
conduction abnormalities and severity of AS (38,40). It 
is also less common in younger healthy individuals (38). 
However, PPI occurrence can have increased consequences 
in young patients as it has various long-term adverse effects 
on the heart (38). Thus, PPI risk should be considered when 
evaluating young low surgical risk BAV patients for TAVR 
vs. SAVR as deploying above the membranous septum, 
using a balloon-expandable TAVR and avoiding oversizing 
can help mitigate PPI risk.

Coronary obstruction and access 

Coronary access is always a concern during TAVR patient 
selection. This is especially true in young patients when 
considering their lifetime management of AS. Coronary 
obstruction is associated with low coronary heights and 
small sinus of Valsalva diameters (41). BAV patients have 
been found to have larger sinus of Valsalva diameters and 
no difference in coronary heights compared to tricuspid 
patients (8). In some BAV patients the coronary ostium 
location can be abnormal and located close to the native 
commissure where in combination with heavy calcification 
can decrease the gap between the native tissue and the 
coronary ostium following TAVR. When considering 
secondary replacement, it is important to consider the type 
and position of the implant. TAVR deployment in SAVR 
has a preventative strategy for coronary obstruction known 
as BASILICA which involves intentional laceration of the 
bioprosthetic leaflet allowing for blood flow to the coronary 
artery (42). However, if TAVR is performed as the first 
intervention it can increase the risk of coronary access issues 
following the second TAVR procedure, especially if the first 
valve was a self-expanding prosthesis that had supra-annular 
leaflets. The supra-annular bioprosthetic cusp suturing 
for the self-expandable device places the bioprosthetic 
cusps higher up on the frame and closer to the coronary 
ostium. Similarly, increased deployment heights also place 
the bioprosthetic cusps closer to the coronary ostium. 
BASILICA has been shown to be much less effective for 
TAVR in TAVR (43). When evaluating young low surgical 
risk BAV patients for TAVR vs. SAVR the height and 
location of the coronary artery should be measured and the 
risk of coronary obstruction following the first and second 
intervention should be considered.

Figure 3 PVR and aortic root rupture risk factors in BAV patients. 
Isolated PVR risks including valve undersizing/underexpansion, 
absence of post balloon dilation, native elliptical opening, isolated 
aortic root rupture risk factors including oversizing/overexpansion, 
post balloon dilation, and low tissue compliance, and factors 
increasing both risks including excess leaflet calcification and 
presence of a calcific raphe. PVR, paravalvular regurgitation; BAV, 
bicuspid aortic valve.

Low tissue 
compliance

PVR and aortic root rupture risk factors in BAV patients

Aortic root 
rupture

PVR

Undersizing/
underexpansion

Oversizing/
overexpansionExcess leaflet 

calcification

No post balloon 
dilation

Elliptical opening

Post balloon 
dilation

Calcific raphe



Yeats et al. SAVR or TAVR in BAV394

© Annals of Cardiothoracic Surgery. All rights reserved. Ann Cardiothorac Surg 2022;11(4):389-401 | https://dx.doi.org/10.21037/acs-2022-bav-20

SAVR risks and benefits

SAVR for the management of AS has its inherent risks 
and benefits. The main risks are associated with the 
physically demanding nature of the procedure where 
rates of death, stroke, or rehospitalization of 17.4% have 
been seen in low surgical risk tricuspid patients after  

two years (25). The short-term recovery time and possibility 
of psychological damage following open heart surgery is 
also a factor when a patient is considering intervention. 
However, in anatomically complex BAV patients the main 
benefit of SAVR is significantly reducing the common risks 
associated with TAVR that arise from the elliptical, heavily 

Figure 4 Hemodynamics of asymmetrical stent deployments commonly seen post TAVR in BAV patients. Eccentric deployment showing 
a localized area of high Reynolds shear stress and a region of elevated turbulence intensity compared to the circular case (left), tilted 
deployment with respect to the native sinus showing increased fluid residence in the sinus that the TAV is tilted away from (right), and 
underexpanded deployment showing increased leaflet folding and increased neo-sinus blood residence time (bottom) (35-37). The images 
included in this figure are reprinted with the source acknowledged as following: Left: reprinted by permission from Springer Nature (35); 
right: reprinted by permission from Springer Nature (37); bottom: reprinted by permission from Oxford University Press and European 
Association for Cardio-Thoracic Surgery (EACTS) (36). TAVR, transcatheter aortic valve replacement; BAV, bicuspid aortic valve; TAV, 
transcatheter aortic valve.
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calcified anatomy including aortic root rupture, PVR, and 
asymmetrical deployments. The elliptical native leaflets 
and heavy calcification are excised making it a non-factor in 
the replacement. In young patients where future coronary 
access is a concern for repeated intervention, SAVR also has 
the benefit of the BASILICA technique which allows for 
blood flow to the coronary artery and is not as effective for 
TAVR in TAVR procedures (42,43). A secondary benefit of 
SAVR is it allows the parallel replacement of a dilated aortic 
root and/or aorta which is very relevant in BAV patients 
due to the common association of valvular and aortic 
disease. Lastly, in the case of aortic insufficiency, surgery 
can repair the malfunctioning native valve and restore it to 
proper function without the need for replacement. Overall, 
in complex BAV anatomies the risks of TAVR outweigh 
the risks and physically demanding nature of SAVR in 
low surgical risk patients where the surgical device will 
likely have less adverse complications and have increased 
durability, however, this has yet to be validated with a 
clinical trial comparing TAVR vs. SAVR in low surgical risk 
BAV patients.

Optimal TAVR for BAV strategy

In patients who are high or extreme surgical risk where 
TAVR is often the only option, the effectiveness of various 
TAVR strategies and when they should be used can be a 
difficult decision. The operator has the choice between 
balloon-expandable or self-expandable devices and can alter 
the balloon filling volume and device placement and can 
post dilate the stent in either device. Each of these choices 
can impact the risk for PVR, aortic root rupture, pacemaker 
implantation and the device hemodynamics. 

Use of balloon-expandable device and post balloon 
dilation

In severely calcified BAVs, self-expandable devices often 
result in the stent being very deformed causing improper 
opening and closing of the bioprosthetic leaflets and PVR. 
The use of a balloon-expandable device or post dilating 
with a balloon can help to mitigate PVR (19,20). Of 
course, these strategies should be used with caution in high 
calcium volume patients where there is risk of aortic root 
rupture. Currently there is no preventative mechanism to 
stop balloon expansion prior to damaging the tissue and is 
completely up to the operator’s experience to stop if they 
feel strong resistance from the tissue. Ultimately, PVR 

can be decreased with balloon expansion, but should be 
performed with caution as to not damage the native tissue.

Importance of deployment depth

The deployment depth for balloon-expandable valves is 
often intra-annular—that is to deploy the stent just below 
the native annulus as to have the bioprosthetic leaflets 
be at the same depth as the native leaflets. However, this 
may not always be optimal especially for heavily calcified 
BAV patients who may have a circular annulus and an 
elliptical leaflet opening which can lead to anchoring 
issues (16). For self-expandable valves, the deployment 
depth can affect the risk of pacemaker implantation where 
a decrease in deployment height can increase the risk of 
contacting the inferior border of the membranous septum 
which is the location of part of the conduction system (44). 
Measuring the membranous septum length preoperatively 
can assist in determining deployment depth with respect 
to pacemaker implantation risk. Coronary access should 
also be considered when deciding the deployment depth 
in young patients where repeated intervention may be 
necessary. Ensuring the top of the bioprosthetic cusps 
are below the coronary ostium can help prevent future 
coronary obstruction or coronary access issues. Overall, the 
deployment depth is an important consideration for device 
anchoring, PPI, and coronary access.

Improving TAVR for BAV procedural strategies 
and planning

Given many BAV patients are low surgical risk, they often 
have the choice of TAVR or SAVR. TAVR outcomes are 
very dependent on the patient anatomy making the patient 
selection an extremely important decision especially 
when considering patient lifetime management in young 
patients. It is known that increased native valve resistance 
from the raphe and calcium volume increases PVR, aortic 
root rupture, and asymmetrical stent occurrence however, 
refined cutoff points and strict guidelines have not been 
established. This is mainly attributed to the lack of 
structured clinical trials assessing TAVR vs. SAVR for BAV 
safety. These factors make it difficult to evaluate the risk of 
TAVR during the patient planning process. The following 
sections highlight new procedural TAVR strategies for 
mitigating TAVR associated risks and the state of 3D 
printing and computer modeling technologies to aid in 
procedural planning.
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New procedural strategies for complication prevention

Aortic root rupture is a very random event and is dependent 
on many different factors that are not measurable with 
medical imaging, making it very difficult to predict. 
Preventative techniques are to reduce balloon filling volume 
based on the operator’s sense of the tissue resistance and 
planned volume reduction based on observed high calcium 
volume. Snir et al. recently evaluated the feasibility of 
calculating tissue stress from balloon pressure and using 
it as a guide to prevent root rupture (45). This is a step in 
the right direction however, it does not capture high local 
stresses from calcium piercing into the tissue as the pressure 
measurement is measured globally throughout the balloon 
and does not factor patient specific material properties and 
thickness. 

Manufacturers have recently added larger skirts and stent 
covers to their devices in the SAPIEN 3 Ultra and Evolut 
PRO+ which contribute to PVR reduction. Concerning 
PPI, some studies have shown rates as low as 3% through 
careful consideration of device placement with respect to 
the conduction system and alternate fluoroscopic views to 
allow for optimal positioning (46,47). Device under-sizing 
is common in BAV patients who have cone shaped valve 
openings. Preventative strategies have been developed 
consisting of balloon pre-dilation and visualizing the 
diameter of the balloon along the height of the valve and 
measuring the valve diameter at various locations other 
than the annulus (16,33). As for preventing asymmetrical 
deployments in BAV patients, preventative strategies have 
not yet been developed other than the use of balloon 
dilation. 

Procedural planning: 3D printing

Benchtop analysis in the past has mostly contributed 
by providing more detailed information on valve and 
device structural and hemodynamic function on a more 
fundamental level. However, recently 3D printing has 
made strides in its resolution and non-uniform material 
property printing capabilities. This has allowed for accurate 
reconstruction of patient’s anatomy from CT and can give 
valuable insight for procedural planning (48). The main 
benefits are that it provides a 3D visual of the anatomy 
for the operator and has even shown correlation between 
measured geometric gaps to observed PVR in balloon-
expandable and self-expandable valves (49,50). 

One of the biggest challenges in 3D printing is the 

material properties. 3D printed soft materials are often 
very fragile and the material is not patient specific, making 
it difficult to accurately model structural deformation for 
assessing device deployment geometry and performing 
proper hemodynamic assessment in a flow loop. Additionally, 
there are very high amounts of resources required. The 
process is very time-consuming consisting of manual 
computer reconstruction of the anatomy, long printing 
times of up to multiple days, many hours of tedious cleaning 
of the support material, expensive 3D printing materials, 
machines, engineering software and trained engineer labor 
hours. Overall, 3D printing can accurately capture the 
geometry of the anatomy and can provide some geometric 
predictions of the procedure but currently has material 
property and resource efficiency limitations preventing it 
from widespread use.

Procedural planning: computer modeling

Computer simulation for prospective planning has been 
developing over the past decade. Many groups have 
developed accurate structural models for simulating the 
deployment of both balloon and self-expandable valves 
(51,52). This has been shown to have better predictive 
power for coronary obstruction compared to traditional 
methods (53). PPI has been shown to be accurately 
predictable for self-expandable valves in BAV anatomies 
based on the contact area between the stent and the inferior 
border of the membranous septum (54). Computational 
fluid dynamics has also been shown to accurately predict 
PVR severity in self-expandable and balloon-expandable 
TAVs (52,54-56). The prediction model process for balloon-
expandable valves is shown in Figure 5 including anatomical 
reconstruction, stent deployment, and risk assessment for 
coronary obstruction and PVR. 

Originally these models were very resource expensive 
including many manual hours for skilled engineers, 
expensive software, and long simulation times. However, 
the models are becoming more efficient through the 
incorporation of artificial intelligence and machine learning. 
This includes nearly automatic computer reconstruction 
of the patient anatomy, reduced order simulation models 
for the deployment of the stent, and machine learning risk 
assessment (57-59). This has enabled commercial availability 
of prospective modeling including companies such as 
HeartFlow offering coronary artery stenting modeling, 
FEops offering TAVR and left atrial appendage occluder 
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modeling, and DASI Simulations with transcatheter 
aortic and mitral modeling. These companies to date have 
modeled thousands of patients to assist in patient planning.

Medical imaging currently cannot provide information 
on the vessel thickness, intricate geometric calcium 
integration, tissue fiber distribution, and residual tissue 
stress from physiological loading. Geometric factors are 
particularly complex in BAV patients often due to increased 
calcium volume, abnormal fiber distribution due to the 
nature of the congenital defect (60), and difficulty to 
assess the precise length and degree of fusion at a raphe. 
These factors make it very difficult to accurately measure 
the stress in the native tissues to assess for possible tissue 
damage. Currently, most TAVR models do not incorporate 
both structural deformation and fluid responses together, 
known as fluid-structure interaction, which is very difficult 
to simulate. It would be very advantageous clinically to 
simulate the opening and closing of the device for assessing 
pressure gradient and fluid stagnation regions, which 
provide information on the device function and durability, 
especially in young patients being evaluated for TAVR. 

Fluid-structure interaction models are in their earlier 

stages where some existing models simulate the opening and 
closing of the device leaflets in the patient specific anatomy, 
however these all have their limitations (57,61-63) (Figure 5).  
Mainly, the geometric simplification of the anatomy, rigid 
vessels, and very long simulation times up to multiple 
weeks. Overall, computational modeling is already being 
used to aid in clinical planning and has shown accuracy in 
predicting PVR, PPI, and coronary obstruction. However, 
modeling has increased limitations for simulating complex 
anatomies, especially BAVs, due to the abnormal geometry 
and unknown patient specific properties making it difficult 
to assess aortic root rupture. Additionally, thrombosis and 
long-term durability assessment is difficult due to the high 
complexity and low efficiency of fluid-structure interaction 
simulations.

Conclusions

TAVR has changed the field of valve replacement and is 
currently projected to increase in use for BAV patients 
with AS over SAVR due to fast patient recovery times and 
recent FDA approval for low surgical risk patients and 

Figure 5 Current and future state of computer modeling for TAVR outcome prediction. Anatomical reconstruction, stent deployment and 
risk assessment for coronary obstruction and PVR (top) and future fluid-structure interaction approach modeling hemodynamics assessing 
blood flow and bioprosthetic leaflet strain after deployment (bottom). Reprinted by permission from Elsevier (57). TAVR, transcatheter 
aortic valve replacement; PVR, paravalvular regurgitation; MIPE, maximum in-plane strain.
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removal of the TAVR for BAV precautionary label. It is 
known that calcification levels and complex BAV anatomical 
structures contribute to increased complication risks 
following TAVR making SAVR the more optimal choice 
in anatomically complex low surgical risk BAV patients. 
SAVR also has advantages when considering dual treatment 
of aortopathy which is common in BAV patients. Cutoffs 
for acceptable TAVR in BAV patients based on calcium 
volumes and distributions is an area of active investigation. 
Additionally, the long-term side effects from asymmetrical 
stent deployments associated with TAVR for BAV patients 
are unknown. Future studies including a long-term clinical 
trial evaluating the differences between TAVR and SAVR 
in low surgical risk BAV patients can assist in filling the 
knowledge gaps for a safer transition to TAVR. New patient 
screening techniques such as 3D printing and computer 
modeling can provide more information on the suitability 
for highly calcific BAV patients for TAVR by predicting the 
risk of PVR, PPI, and coronary obstruction however, the 
determination of their effectiveness in their predictability 
of aortic root rupture, thrombosis, and durability requires 
further studies.
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